Calculus by Michael Spivak - 4th Edition - Full Table of Contents

PREFACE ....................................... vi

PART I: Prologue

  • 1 Basic Properties of Numbers ........................... 3
  • 2 Numbers of Various Sorts ............................. 21

PART II: Foundations

  • 3 Functions ............................................. 39
    Appendix. Ordered Pairs ................................ 54
  • 4 Graphs ................................................ 56
    Appendix 1. Vectors .................................... 75
    Appendix 2. The Conic Sections ........................ 80
    Appendix 3. Polar Coordinates ......................... 84
  • 5 Limits ................................................ 90
  • 6 Continuous Functions ................................. 115
  • 7 Three Hard Theorems .................................. 122
  • 8 Least Upper Bounds ................................... 133
    Appendix. Uniform Continuity .......................... 144

PART III: Derivatives and Integrals

  • 9 Derivatives .......................................... 149
  • 10 Differentiation ..................................... 168
  • 11 Significance of the Derivative ...................... 188
    Appendix. Convexity and Concavity ..................... 219
  • 12 Inverse Functions ................................... 230
    Appendix. Parametric Representation of Curves ......... 244
  • 13 Integrals ............................................ 253
    Appendix. Riemann Sums ................................. 282
  • 14 The Fundamental Theorem of Calculus ................. 285
  • 15 The Trigonometric Functions ......................... 303
  • *16 π is Irrational .................................... 324
  • *17 Planetary Motion ................................... 330
  • 18 The Logarithm and Exponential Functions ............. 339
  • 19 Integration in Elementary Terms ..................... 363
    Appendix. The Cosmopolitan Integral ................... 402

PART IV: Infinite Sequences and Infinite Series

  • 20 Approximation by Polynomial Functions ............... 411
  • *21 e is Transcendental ................................ 442
  • 22 Infinite Sequences .................................. 452
  • 23 Infinite Series ..................................... 471
  • 24 Uniform Convergence and Power Series ................ 499
  • 25 Complex Numbers ..................................... 526
  • 26 Complex Functions ................................... 541
  • 27 Complex Power Series ................................ 555

PART V: Epilogue

  • 28 Fields ............................................... 581
  • 29 Construction of the Real Numbers .................... 588
  • 30 Uniqueness of the Real Numbers ...................... 601

Additional Sections

  • Suggested Reading ...................................... 609
  • Answers (to selected problems) ......................... 619
  • Glossary of Symbols .................................... 665
  • Index ................................................... 669

Note: Chapters marked with * are optional or supplementary material.